
1 

Multiple controls on sediment grain properties of Peruvian 1 

coastal river basins 2 

3 

Camille Litty
1
, Fritz Schlunegger

1
, Willem Viveen

2
4 

5 

  1
 Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH- 3012 Bern. 6 

2
 Sección de Ingeniería de Minas e Ingeniería Geológica, Departamento de Ciencias e 7 

Ingeniería, Pontificia Universidad Católica del Perú, San Miguel, Lima, Perú.  8 

9 

ABSTRACT  10 

Twenty-one coastal rivers located on the western Peruvian margin were analyzed to 11 

determine the relationships between fluvial and environmental processes and sediment grain 12 

properties such as grain size, roundness and sphericity. Modern gravel beds were sampled along 13 

a north-south transect on the western side of the Peruvian Andes, and at each site the long a-axis 14 

and the intermediate b-axis of about 500 pebbles were measured. Morphometric properties such 15 

as river gradient, catchment size and discharge of each drainage basin were determined and 16 

compared against measured grain properties. Grain size data show a constant value of the D50 17 

percentile all along the coast, but an increase in the D84 and D96 values and an increase in the 18 

ratio of the intermediate and the long axis from south to north. Our results then yield better-19 

sorted and less spherical material in the south when compared to the north. No correlations were 20 

found between the grain size and the morphometric properties of the river basins when 21 

considering the data together. Grouping the results in a northern and southern group shows 22 

better-sorted sediments and lower D84 and D96 values for the southern group of basins.  Within 23 
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the two groups, correlations were found between the grain size distributions and morphometric 24 

basins properties. Our data indicates that fluvial transport is the dominant process controlling the 25 

erosion, transport and deposition of sediment in the southern basins while we propose a 26 

geomorphic control on the grain size properties in the northern basins. Sediment properties in the 27 

northern and southern basins could not be linked to differences in tectonic controls. On the other 28 

hand, the north-south trend in the grain size and in the b/a ratio seems controlled by a shift 29 

towards a more humid climate and towards a stronger El Nino impact in northern Peru. But, 30 

generally speaking, the resulting trends and differences in sediment properties seem controlled 31 

by differences in the complex geomorphic setting along the arc and forearc regions.  32 

 33 

1. INTRODUCTION  34 

 The size and shape of gravel bears crucial information about the transport dynamics of 35 

mountain rivers (Hjulström, 1935; Shields, 1936; Blissenbach, 1952; Koiter et al., 2013; 36 

Whittaker et al., 2007; Duller et al., 2012; Attal et al., 2015), about sediment provenance (Parker, 37 

1991; Paola et al., 1992a, b; Attal and Lavé, 2006) and about environmental conditions such as 38 

uplift and precipitation (Heller and Paola, 1992; Robinson and Slingerland, 1998; Foreman et al., 39 

2012; Allen et al., 2013; Foreman, 2014). The mechanisms by which grain size and shape change 40 

from source to sink have often been studied with flume experiments (e.g. McLaren and Bowles, 41 

1985; Lisle et al., 1993) and numerical models (Hoey, 2010). These studies have mainly been 42 

directed towards exploring the controls on the downstream reduction in grain size of gravel beds 43 

(Schumm and Stevens, 1973; Hoey and Fergusson, 1994; Surian, 2002; Fedele and Paola, 2007). 44 

Less attention has, however, been paid to external controls such as climate and tectonic change 45 

as well as a complex geomorphic setting on grain size properties.  46 
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Here, we present data on sediment grain properties from streams situated on the western 47 

margin of the Peruvian Andes (Figure 1A) in order to elucidate the effects of precipitation, 48 

hydrological properties, catchment morphometrics, tectonics and the El Niño on those 49 

sedimentological characteristics. We will show that differences in tectonic regime do not 50 

influence sediment properties, whereas climate anomalies such as the El Niño effect, internal 51 

river dynamics, supply patterns and geomorphic setting seem to be the most important factors for 52 

determining sediment size and shape.  53 

54 

1.1 Geologic and tectonic setting 55 

The study area is located at the transition from the Peruvian Andes to the coastal 56 

lowlands along a transect from the cities of Trujillo in the north (8°S) to Tacna in the south 57 

(18°S). In northern and central Peru, a flat, up-to 100 km, broad coastal forearc plain with 58 

Paleogene-Neogene and Quaternary sediments (Gilboa, 1977) connects to the western Cordillera. 59 

This part of the western Cordillera consists of Cretaceous to late Miocene plutons of various 60 

compositions (diorite, but also tonalite, granite and granodiorite) that crop out over an almost 61 

continuous 1600-km long arc that is referred to as the Coastal Batholith (e.g. Atherton, 1984; 62 

Mukasa, 1986; Haederle and Atherton, 2002; Figure 1B). In southern Peru, the coastal plain 63 

gives way to the Coastal Cordillera that extends far into Chile. The western Cordillera comprises 64 

the central volcanic arc region of the Peruvian Andes with altitudes of up to 6768 m.asl, where 65 

currently active volcanoes south of 14°S of latitude are related to a steep slab subduction. 66 

Contrariwise, Cenozoic volcanoes in the central and northern Peruvian arc have been extinct 67 

since c. 11 Ma due to a flat slab subduction, which inhibited magma upwelling from the 68 

asthenosphere (Ramos, 2010). 69 
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 The bedrock of the Western Cordillera is dominated by Paleogene, Neogene and 70 

Quaternary volcanic rocks (mainly andesitic or dacitic tuffs, and ignimbrites) originating from 71 

distinct phases of Cenozoic volcanic activity (Vidal, 1993). These rocks rest on Mesozoic and 72 

Early Tertiary sedimentary rocks (Figure 1B). In southern Peru, the segment with steep 73 

subduction hosts raised Quaternary marine terraces (Saillard et al., 2011) (Figure 1A). This 74 

suggests the occurrence of surface uplift south of 15°S of latitude, while the region dominated by 75 

flat slab subduction has most likely subsided at least during the Quaternary (Macharé et al., 76 

1986). Because of these inferences, we expect to see a tectonic control on grain size distribution 77 

through larger clasts south of 15°S of latitude compared to the segment north of it.  78 

 The local relief along the western Cordillera has been formed by deeply incising rivers 79 

that flow perpendicular to the strike of the Andes (Schildgen et al., 2007; 2009). The morphology 80 

of the longitudinal stream profiles is characterized by two segments separated by a distinct 81 

knickzone (Figure 2; Trauerstein et al., 2013). These geomorphic features have formed through 82 

headward retreat in response to a phase of enhanced surface uplift during the late Miocene (e.g., 83 

Schildgen et al., 2007). Upstream of these knickzones, the streams are mainly underlain by 84 

Tertiary volcanoclastic rocks, while farther downstream incision has disclosed the Coastal 85 

Batholith and older meta-sedimentary units (Trauerstein et al. 2013). The upstream edges of 86 

these knickzones also delineate the upper boundaries of the major sediment sources (Litty et al., 87 

2017). Contrariwise, little to nearly zero clastic material has been derived from the headwater 88 

reaches in the Altiplano, where the flat landscape has experienced nearly zero erosion, as 10Be-89 

based denudation rate estimates (Abbühl et al., 2011) and provenance tracing have shown (Litty 90 

et al., 2017). 91 

 92 
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1.2 Climatic setting 93 

 The N-S-oriented, annual rainfall rates decrease from 1000 mm per year near the Equator 94 

to 0 mm along the coast in southern Peru and northern Chile (Huffman et al., 2007; Figure 1C). 95 

The Peruvian western margin shows an E-W contrasting precipitation pattern with high annual 96 

precipitation rates up to 800 mm on the Altiplano and c. 0 mm per year on the coast (Figure 1C).  97 

This precipitation gradient in the western Andes is related to the position of the Intertropical 98 

Convergence Zone (ITCZ, inset of Figure 1C) associated with an orographic effect on the eastern 99 

side of the Andes (Bookhagen and Strecker, 2008). During austral summer (January) the center 100 

of the ITCZ is located farther south, transferring the moisture from the Amazon tropical basin to 101 

the Altiplano (Garreaud et al., 2009) and leading to a wet climate on the Altiplano with strong 102 

precipitation rates. During austral winter, the Altiplano is under the influence of dry air masses 103 

from the subsiding branch of the Hadley cell that result in a more equatorial position of the ITCZ 104 

and in a dry persistent westerly wind with almost no precipitation on the Altiplano. Additionally, 105 

the dry coast is due to the Humboldt Current, which advects cold waters from the Antarctica, 106 

cooling down the ocean along the coast. This causes an inverse climate gradient in which hot air 107 

cannot sufficiently rise and is trapped against the Andean foothills. The hot air then cools down 108 

at high altitudes in the atmosphere thereby inhibiting precipitation. Additionally, the Andes form 109 

an orogenic barrier preventing Atlantic winds and rain to reach the coast. Only around Piura, 110 

situated in northern Peru at 5°S latitude, the ocean water sufficiently warms up because of the 111 

mixing with the tropical current derived from Ecuador, resulting in precipitation in northern 112 

Peru. In addition, every 2 to 10 years, near to the Equator, the Pacific coast is subjected to strong 113 

precipitation resulting in high flood variability, related to El Nino weather phenomenon (ENSO) 114 

(DeVries, 1987).  115 
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 116 

2. SITE SELECTION AND METHODS 117 

 The selected rivers are located along a transect from Trujillo in the north (8°S) to Tacna 118 

(18°S) in the south parallel to the Pacific side of the Peruvian Andes (Figure 1A). From north to 119 

south, climate becomes generally drier along the coast, with the northern area being susceptible 120 

to changes in climate due to the El Niño phenomenon. Also, the tectonic regime changes from 121 

little tectonic uplift of the forearc, north of Pisco, to rapid uplift south of Pisco. The grain size 122 

data from the selected rivers will therefore be used to identify possible trends (or lacks thereof) 123 

along strike of the Peruvian Andes. Additionally, the Majes catchment (marked with red color on 124 

Figure 1A), which is part of the 21 studied basins, has been sampled at five sites from upstream 125 

to downstream to explore the effects related to the sediment transport processes for a section 126 

across the mountain belt, but along stream (Figure 2). The Majes basin has been chosen because 127 

of its easy accessibility in the upstream direction. For the other basins, sampling sites were 128 

mostly accessible along the Pan-American Highway (see Table 1 for the coordinates of the 129 

sampling sites).  130 

 131 

 At each site, around ten digital images were taken for grain size analysis with the 132 

software program Image J (Rasband, 1997). It has been shown that using a standard frame with 133 

fixed dimensions to assist gravel sampling reduces user-biased selection of gravels (Marcus et 134 

al., 1995; Bunte and Abt, 2001a). In order to reduce this bias, we substituted the frame by 135 

shooting an equal number of photos at a fixed distance from the ground surface. Photos were 136 

taken from an approximately 10m
2
-large area to take potential spatial variabilities among the 137 

gravel bars into account. From those photos, the intermediate b-axes of around 500 pebbles were 138 
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measured, and 500 additional pebbles were used to estimate the ratio between the b-axes and 139 

long a-axes (Bunte and Abt, 2001b). Our sample population exceeds the minimum number of 140 

samples needed for statistically reliable estimations of grain size distributions in gravel bars 141 

(Howard, 1993; Rice and Church, 1998). The pebbles were characterized on the basis of their 142 

median (D50), the coarse (D84) and the maximum (D96) fractions. This means that 50%, 84% and 143 

96% of the sampled fraction is finer than the 50
th

, 84
th

 and 96
th

 percentile of the samples. On a 144 

gravel bar, pebbles tend to lie with their short axis perpendicular to the surface, thus exposing 145 

their section that contains the a- and b-axes (Bunte and Abt, 2001b). However, the principal 146 

limitation is the inability to accurately measure the fine particles < 3 mm (see also Whittaker et 147 

al., 2010). While we cannot resolve this problem with the techniques available, we do not expect 148 

that this adds a substantial bias in the grain size distributions reported here as their relative 149 

contributions to the point-count results are minor (i.e. < 5%, based on visual inspection of the 150 

digital images).  151 

 Grain size distributions of modern bars were then compared to stream runoff, river and 152 

basin morphometric properties. River discharge estimates were extracted from the results of 153 

annual surveys performed by the National Water Agency of Peru (Autoridad Nacional del Agua, 154 

2016; Table 1). The averaged river gradients and widths at the sampling sites were extracted over 155 

a 500-m-long river profile from satellite images and orthophotos. The upstream contributing area 156 

of the basins was extracted from the 90-m digital elevation model Shuttle Radar Topography 157 

Mission (SRTM) ~90-m resolution (NASA; Table 1).  158 

                                                                                                            159 

3. RESULTS                                                                                                              160 

3.1 North-south pattern of grain sizes 161 
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 The results of the grain size measurement reveal a large variation for the b-axis where the 162 

values of the D50 range from 1.3 cm to 5.5 cm from northern to southern Peru (Figure 3A; Table 163 

1). Likewise, values for the D84 vary between 3 cm and 10.5 cm with an increase of the values in 164 

the order of c. 0.05 mm/km from south to north (Figure 3A). The sizes for the D96 reveal the 165 

largest spread, ranging from 6 cm to 31 cm with a generally larger increase (0.15 mm/km 166 

towards the north) compared to the D50 and D84 values. The difference between the D50 and the 167 

D96 is smaller in the south than in the north indicating that sediments are better sorted in the 168 

south (Figure 3A). In addition, the ratios between the b-axis and a-axis (sphericity ratio) increase 169 

from south to north indicating that the pebbles are more spherical in the north (Figure 3B).  170 

 Another way to analyze the results is to separate the data in two basin groups. The 171 

motivation for this grouping lies in the differences in the tectonic conditions with normal slab 172 

subduction and an uplifting coast south of 15°S, and flat slab subduction and a flat coastal 173 

topography north of 15°S latitude (see above). We thus expect to unravel possible differences in 174 

grain size properties in response to these different morphotectonic conditions. Note that in the 175 

streams located between 15.6°S and 13.7°S, no gravel bars are encountered along the coast and 176 

only sand bars can be found, and therefore no results are exhibited (Figure 3A and B). 177 

 178 

3.2 The Majes basin 179 

 The D50 percentile of the b-axis decreases from 6.2 cm at 106 km river upstream to a 180 

value of 5.2 cm at 20 km upstream for the Pacific coast (Figures 2 and 4 and Table 2). Likewise, 181 

the D84 decreases from 19 cm to 8.7 cm, and the D96 decreases from 31 cm to 11.6 cm (Figure 4). 182 

Geomorphologists widely accept the notion that downstream hydraulic geometry of alluvial 183 

channels reflects the decrease of particle size within an equilibrated system involving flow, 184 
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channel gradient, sediment supply and transport. Sternberg (1875) formalized these relations and 185 

predicted an exponential decline in particle size in gravel bed rivers as a consequence of abrasion 186 

as the gravel is transported downstream. The relation follows the form: Dx = D0 e 
–αx (Sternberg, 187 

1875). Here, the exponent α decreases from 0.3 for the largest percentile (i.e., the D96) to c. 0.1 188 

for the D50.     189 

 190 

3.3 Correlations between grain sizes and morphometric properties  191 

 If all river basins are considered, without grouping them into northern and southern 192 

domains, no distinct positive nor negative correlations were found between the D50,  D84 and D96 193 

percentiles of the gravel size and the long-stream distance to the knickzone reaches where the 194 

main sediment sources are located (Figure 5A and B). Likewise, no correlations have been 195 

identified between the grain size and the local river gradient (Figure 5C and 5D). Also no 196 

correlations have been found between the different grain size percentiles and the annual mean 197 

(Figure 5E) and maximum water discharge estimates (Figure 5F).  198 

 Contrariwise, positive correlations do exist between the grain size distributions and the 199 

river properties when the results are separated into northern and southern domains (see Figure 1). 200 

In the southern group of basins, a positive, yet weak, correlation has been found between the D50 201 

and the mean runoff if normalized over the catchment area (Figure 6A; Table 1). The 202 

normalization has been made to identify the controls of effective precipitation on the grain size 203 

distribution. In particular, this normalization allows to identify the amount of rainfall per year, 204 

which explicitly contributes to runoff (after absorption of water through groundwater and 205 

evapotranspiration). Contrariwise, in the northern basins, a positive correlation has been found 206 

between the river gradient at sampling site and the D96 (Figure 6B). 207 
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 208 

4. DISCUSSION 209 

4.1 Downstream fining trends at Majes indicates fluvial controls  210 

 In fluvial environments the sorting of the sediment depends on the downstream distance 211 

from its source (Hoey and Ferguson, 1994; Kodoma, 1994; Paola and Seal, 1995). This is 212 

particularly the case for the Majes river, where the sorting gets better in the downstream 213 

direction. In particular, we do see an exponential downstream fining trend of the three percentiles 214 

in the Majes river (Figure 4). This is somewhat surprising because sufficiently voluminous 215 

sediment input from other sources may perturb any downstream fining trends in the grain size 216 

distribution (Rice and Church, 1998). Likewise, in the Majes basin, the sediment supply from the 217 

hillslopes to the trunk stream has occurred mainly through debris flow processes and landsliding 218 

(Steffen et al., 2010; Margirier et al., 2015). Therefore, the exponential downstream fining 219 

indicates that in the Majes basin fluvial transport is the dominating process controlling the 220 

transport and evacuation of sediment from their sources down to the Pacific Ocean.  221 

 222 

4.2 Lack of tectonic controls suggests a geomorphic influence on grain size patterns  223 

 No correlations were found between the presence or absence of the uplifted coast and the 224 

grain size distributions. Indeed, we would expect larger grain sizes where the area is uplifting 225 

through an increase of the river gradient, unless the rivers are able to compensate any uplift by 226 

incision in the underlying bedrock or alluvium. In that case the rivers remain in a state of semi-227 

equilibrium without a change in river gradient, particularly along their lower flat segments (Bull, 228 

1991; Maddy, 1997; Viveen et al., 2013). The fact that this is not the case here is demonstrated 229 

by the steep river profiles and pronounced knickzones (Schildgen et al., 2009). Interestingly, we 230 
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see the contrary in our data: smaller and better sorted grains in the uplifted coastal area where the 231 

drainage basins are larger, and larger grains with a lower degree of sorting in the north where 232 

recent uplift seems to be lacking and where the sizes of the catchments are relatively small. We 233 

thus infer primarily a geomorphic control based on these relationships where smaller rivers in 234 

smaller basins are less capable of sorting the material upon transport.  235 

 236 

4.3. Climatic control 237 

 In addition to the geomorphic control on grain size inferred here through correlations 238 

between basin morphometric properties and grain size distributions, a general south-north 239 

increasing trend in grain size is visible that overlies the patterns discussed earlier (Figure 3). 240 

Large-magnitude, low-frecuency rainfall events are an important driver for catchment-scale soil 241 

erosion over variable temporal scales (Baartman et al., 2013). Floods in temperate environments 242 

are generally characterized by larger magnitudes when compared to arid regions if similar 243 

upstream basin sizes are considered (Molnar et al., 2006). This could provide an explanation for 244 

the generally larger grain sizes in the north compared to the south, certainly if they are associated 245 

with periodic glacial melt. In particular, a more humid climate, as is the case in northern Peru, 246 

could induce larger floods (compared to the south) with the effect that the material will be 247 

transported more efficiently compared to the southern domains. We acknowledge, however, that 248 

a lack of vegetation in arid climates such as in the south can lead to more intensely erosion 249 

(Morgan and Rickson, 2003). We also note that the coastal area of northern Peru is subjected to 250 

El Niño precipitation events yielding larger flood variability (Wells, 1990; Garreaud and 251 

Aceituno, 2001), which could also explain why the river sediments tend to be larger and worse 252 

sorted.  253 
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 254 

4.4 Possible controls of a complex pattern of sediment supply 255 

 In addition to the aforementioned controls, it is possible that the generally S-N increasing 256 

trend in grain size reflects, at a smaller scale, the complexity of processes and hillslope-channel 257 

coupling relationships, paired with contrasts in fractures of bedrock and effects related to glacial 258 

pre-conditioning. This complexity of morphology and bedrock lithologies complicates the 259 

interpretation of grain size patterns. As an example, the uplifted, flat Moquegua graben system 260 

(c. 17°S; Decou et al., 2011) forms the headwaters of the southern rivers, and those rivers are 261 

also famous for their agricultural terraces (pre)dating Inca times (e.g. Londoño, 2008). Alluvial 262 

fans are also very common in those basins (Steffen et al., 2010). Such flat, stepped elements 263 

generally decrease the amount of landscape erosion (Baartman et al., 2013) and halt the 264 

incorporation of larger, primarily gravity-driven rocks and boulders into the fluvial system. 265 

Contrariwise, the headwaters of the northern basin group encompass the largest area of tropical 266 

glaciers in the world (Rabatel et al., 2013). U-shaped walls from glacier valleys provide a 267 

significant contribution to catchment erosion because their steepness favors rock fall and other 268 

gravity-driven sediment movements (Baartman et al., 2013). Glacier melt and associated 269 

processes such as landsliding (Emmer et al., 2016; Klimes et al., 2016) and glacial lake outburst 270 

floods (Vilimek, 2016) provide significant transport of large blocks into the fluvial domain. In 271 

the north, the Peruvian forearc has been intruded by various generations of magmatic intrusions 272 

(Haederle and Atherton, 2002) and their cooling has led to a dense network of fractures. Pre-273 

fractured rock is easier to erode and may provide an additional source of larger boulders of 274 

granitic composition into the fluvial system. Granite is generally an abrasion-resistant type of 275 

rock and those clasts will retain their initial larger sizes longer while in transport. The southern 276 
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(fore)arc region on the other hand, experiences active volcanism. Volcanic rock is generally 277 

softer and easier to break down and reduces the possibility of maintaining larger clasts in fluvial 278 

transport. This could provide an additional explanation for the generally larger grains in the north 279 

compared to the south.    280 

 281 

4.5. Lithological and transport distance controls on sphericity  282 

 Studies have shown that lithologies and variation in the grain-size distribution of the 283 

supplied sediment play a role in controlling the fining rate within a stream through abrasion and 284 

fracturing (Attal and Lavé 2009; Litty and Schlunegger, 2017). Pebbles from different geological 285 

parent material expose variable predispositions for evolution during the fluvial processes. This 286 

appears to be corroborated by our observations. Rivers from the southern basins show more 287 

spherical gravels in correlation with the presence of volcanic rocks from the forearc region 288 

whereas the rivers from the northern basins show less spherical pebbles in correlation with the 289 

presence of intrusive rocks. The cooling of intrusive rocks in the northern Peruvian forearc has 290 

led to the formation of prefractured rocks. These rocks when eroded from the bedrock are more 291 

prolate and the supplied pebbles to the streams are then less spherical too. We then infer that the 292 

lithology of the parent material affects the shape of the pebbles. 293 

 We also consider a control of the transport distance on the N-S trends in the sphericity of 294 

the pebbles. As particles are transported over longer distances, abrasion tends to equalize the 295 

length of the three axes, thus making a particle more spherical. But this concept does not appear 296 

to be generally true. Indeed, pebbles flatten as effects of abrasion and 3D heterogeneities of 297 

bedrock that becomes more obvious with time and transport distance (Sneed and Folk, 1958). As 298 

the transport distances are larger for the southern basins than for the northern ones (Table 3), the 299 
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pebbles should be less spherical in the southern basins than in the northern ones, which is what 300 

we can see in our data (Figure 3). We note that this is only valid if we assume a linear correlation 301 

between river length and transport time. The reincorporation of previously abraded gravels from 302 

earlier erosion and transport cycles that were temporarily stored in the catchment cannot be 303 

considered here.  304 

   305 

5. CONCLUSIONS 306 

 Twenty-one rivers on the western Peruvian margin were analyzed to determine the 307 

relationships between fluvial processes, tectonics, climate and grain size and shape. The 308 

measurements of the grain sizes reveal a large spread from north to south for the b-axis with 309 

constant values of the D50 percentile and an increase of the D84 and D96 towards the north. The 310 

difference between the D50 and D96 percentiles is smaller in the south indicating that river 311 

sediments are better sorted in the south than in the north. In addition, the sphericity of the 312 

pebbles increases from south to north. A division in a northern and southern group of river basins 313 

was made. The southern group comprises the basins are located between 18.1°S and 15.6°S 314 

while the northern group comprises the catchments between 13.7°S and 7.3°S. These two groups 315 

show differences in their grain size distributions. Rivers in the southern group show better-sorted 316 

sediments and lower D84 and D96 values compared to basins of the northern group. Similarly, for 317 

gravel bars situated in the southern basins, correlations have been found between the D50 and the 318 

mean annual runoff. In the northern basins, the only correlation that has been found is a positive 319 

correlation between the gradient at sampling site and the D96. 320 

We primarily suggest an geomorphic control on the grain size pattern at the scale of the entire 321 

western Andean margin where larger basins host finer grained and better sorted material through 322 
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a combination of selective entrainment and winnowing, the effects of which become more 323 

obvious with transport distance and thus larger basins.  In addition, the overlaying north-south 324 

trend in the grain size could reflect a climatic control on the grain size distribution where a shift 325 

towards a more humid climate towards the north of Peru correlates with larger grains and worse 326 

sorted sediments. Superimposed to these controls, however, differences in hillslope-channel 327 

coupling relationships and complex patterns of sediment supply may perturb this large-scale 328 

pattern.  Additionally, differences in the main lithologies along with different transport distance 329 

in-between the north and the south appear to have a control on the pebbles sphericity. 330 
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FIGURE CAPTIONS 522 

 523 

Table 1: Location of the sampling sites with the altitude in meters above sea level. The table also 524 

displays grain size results together with the rivers’ and basins’ properties and hydrological 525 

properties.  526 
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Table 2: Location of the sampling sites in the Majes basin and grain size results in the Majes 528 

basin. 529 

 530 

Table 3: Differences of the basins characteristics between the southern group of basins and the 531 

northern group as showed in Figure 1 and 4A.  532 

 533 

Figure 1: A: Map of the studied basins showing the sampling sites and the western escarpment 534 

(western escarpment modified after Trauerstein et al., 2013). The southern and northern group of 535 

basins represent catchments displaying differences in terms of their sizes and relationships with 536 

grain sizes (see Results)  B: Geological map of the western Peruvian Andes. C: Map of the 537 

precipitation rates showing the spatial extend of the ITCZ, modified after Huffman et al., 2007. 538 

 539 

Figure 2: Geological map of the Majes basin overlain by the precipitation pattern (Precipitation 540 

data from Steffen et al., 2010., where the black dashed lines show precipitation rates (mm/yr). 541 

GS1 to GS5 represent sites where grain size data has been collected. The right corner shows the 542 

Majes river long profile. 543 

 544 

Figure 3: A: Grain size results for the intermediate (b)-axis of the pebbles in the streams from 545 

north to south at the sampling sites presented in Figure 1. B: Ratio between the intermediate axis 546 

and the long (a)-axis from north to south at the sampling sites presented in Figure 1. 547 

 548 

Figure 4: Grain size results along the Majes River.  549 

 550 
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Figure 5: Grain size data. A: D50 versus distance from the uppermost edge of the western 551 

Escarpment (taken from Trauerstein et al., 2013). B: D96 versus distance from the uppermost 552 

edge of the western Escarpment. C: D50 versus gradient averaged over a 500 m-long reach. D: 553 

D96 versus gradient averaged over a 500 m-long reach. E: D50 versus mean annual runoff. F: D96 554 

versus maixum annual runoff. We only present the plot of the river properties versus the D50 and 555 

D96. We found the same absence of correlation for the 84
th

 percentile.556 

557 

Figure 6: A: D50 versus the mean annual runoff normalized over the catchment area for the 558 

southern basins. B: D96 versus local gradient at the sampling site for the northern basins. 559 

560 
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Southern basins Northern basins

Mean D84 5.7 5.8

Mean D96 9.2 9.85

Sorting Well sorted Badly sorted

Mean catchment area 

(km2)
7200 4000

Mean gradient at 

sampling site
0.016 0.009

Mean distance from 

escarpment (km)
100 69

Table 3: Differences of the basins characteristics between 

the southern group of basins and the northern group 

as showed in Figure 1 and 4A. 
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Figure 1: A: Map of the studied basins showing the sampling sites and the western escarpment 

(western escarpment modified after Trauerstein et al., 2013). The southern and northern group 

of basins represent catchments displaying differences in terms of their sizes and relationships 

with grain sizes (see Results)  B: Geological map of the western Peruvian Andes. C: Map of the 

precipitation rates showing the spatial extend of the ITCZ, (modified after Huffman et al., 2007.)
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Figure 2: Geological map of the Majes basin overlain by the precipitation pattern 

(Precipitation data from Steffen et al., 2010., where the black dashed lines show 

precipitation rates (mm/yr). GS1 to GS5 represent sites where grain size data has 

been collected. The right corner shows the Majes river long profile.
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in Figure 1.
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Figure 4: Grain size results along the Majes River. 
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Figure 5: Grain size data. A: D50 versus distance from the uppermost edge of the western 

Escarpment (taken from Trauerstein et al., 2013). B: D96 versus distance from the uppermost 

edge of the western Escarpment. C: D50 versus gradient averaged over a 500 m-long reach. 

D: D96 versus gradient averaged over a 500 m-long reach. E: D50 versus mean annual runoff. 

F: D96 versus maixum annual runoff. We only present the plot of the river properties versus the 

D50 and D96. We found the same absence of correlation for the 84th percentile.
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Figure 6: A: D50 versus the mean annual runoff 

normalized over the catchment area for the southern 

basins. B: D96 versus local gradient at the sampling 

site for the northern basins.
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